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SUMMARY 

A simple unified numerical method applicable to non-planar subsonic air- 
craft has been developed for calculating either the induced drag for an arbi- 
trary loading or the optimum aircraft loading which results in minimum induced 
drag. The method utilizes a vortex lattice representation of the aircraft 
lifting surfaces coupled with the classic equations and theorems for computing 
and minimizing induced drag. Correlation of results from the numerical method 
with non-planar solutions obtained from other more complex theories indicates 
very good agreement. Comparison of the induced-drag computations using the 
numerical method with experimental data for planar and non-planar configura- 
tions was also very good. 

pi 
INTRODUCTION 

Over the past few years, increased attention has been focused on improving 
aircraft perfor~~ance. One method to improve performance is to lower the air- 
craft induced drag. This can be accomplished by more efficient design of con- 
ventional configurations sr by developing new and unique designs whose intent 
is to minimize induced drag. Typical of new configurations that have been 
developed for this purpose are the Lockheed boxplane and the Whitcomb winglet 
configuration. 

The aircraft lifting surfaces for conventional aircraft as well as for new 
configurations are generally non-planar in design. To achieve a minimum in- 
duced d;ag, these non-planar surfaces must be designed to support the required 
optimum loads as specified by classical theory (refs. 1 and 2). Unfortunately, 
the use of classical theory to determine the design loads is quite cumbersome 
since rather complex conformal transformations must be utilized. Thus, a 
simple inexpensive method is required to determine what the "design to" loading 
of a no..-glanar configuration should be to miniinize the aircraft induced drag. 
Furthermore, for conditions where the aircraft is not operating at design con- 
ditions, an analysis method is required to quickly assess the magnitude of the 
aircraft off-design induced drag. Also, methods of this type are of particular 
importance in making configurational trade-offs. 

The objective of this paper is to present a simple unified numerical 
method applicable to subsonic non-planar aircraft for the rapid calculation of: 
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1. the induced drag for an arbitrary aircraft loading or i 

2 .  the optimum aircraft loading which results in minimum induced drag. 

The paper will include a discussion of the fundamental theoretical concepts on 
which the method is based, followed by the theoretical formulation of the nu- ,, 4 . . 
merical calculation procedure. Computations will be mhde using the method and * - . - i  '- 

will be compared to existing theoretical solutions and to experimental data. . 
This will be followed by an illustration of the utility of the method for 1 .  

making configurational trade-offs by comparing the loading and induced drag 
results for various types of wing additions such as winglets or wing-tip 
extensions. 

SYMBOLS 

geometric influence function 

aspect ratio, b2 IS 

reference span 

local chord of lifting surface 

average chord (S/b) 

soction load coefficient normal to load perimeter 

lift coefficient 

induced drag coefficient 

bending-moment coefficient 

induced drag (DiscDi qS) 

efficiency factor 

resultant force of lifting surface 

length of wing addition 

unit normal vector parallel to Z axis 

length of load perimeter 

lift force (L=CL qS) 

Mach number 



m number of perimeter 

tl unit vector normal to load perimeter 

N section load normal to load perimeter ( N = q  cn c) I 
i 

9 free-stream dynamic pressure ! .  , . .  . 
s ' semi-width of vortex pair , i 

s nondimensional semi-width of vortex pair (s = 2s1/b) 

S reference area 

S.F. side force 

UIVSW induced velocities 

V resultant induced velocity 

vn velocity normal to load perimeter 

v, f ree-stream velocity 

Y', Z '  lifting element coordinate system 

x, y, z aircraft coordinate system 

YCP aircraft spanwise center of pressure 

r circulation (eq. (10)) 

8 rotation angle in the Y-Z plane 

Superscript: 

- indicates vector quantity 

Subscripts: 

i number designating a vortex pair that model a particular lifting 
element 

j number designating a control point on a particular lifting element 

w wing 

w R winglet 



BASIC THEORETICAL CONCEPTS 

Fundamental to the development of the present model is the representation 
of the aircraft non-planar lifting surfaces by a system of rectangular horse- 
shoe vortices (ref. 3). The induced drag for a given loading or the optimum 
loading for minimum induced drag can be calculated for any arbitrary non-planar 
aircraft at subsonic speeds utilizing this vortex representation and the 
following basic law and theorems: Munk's Theorems I to 111, Biot-Savart Law, 
and the Kutta-Joukowski Theorem. 

Munk's fizst theorem (ref. 1) can be stated as follows: 

The t o t a l  induced drag o f  any multiplane system i s  unaltered 
i f  any of  the  Z i f t ing  elements are moved i n  the d i rec t ion  o f  
motion provided tha t  the  a t t i t u d e  o f  the elements i s  adjusted 
t o  maintain the  same d i s t r ibu t ion  o f  l i f '  among them. 

This theorem is commonly referred to as Munk's stagger theorem. An illustra- 
tion of this theorem is shown in figure 1. Several practical applications can 
be deduced from this theorem. First, the chordwise distribution of pressure 
does not affect the theoretical induced drag of the aircraft if constant 
section lift is maintained. Second, wing sweep does not effect the theoretical 
induced drag as long as the spanwise distribution of lift is constant. A third 
application is that the load from a system of multi-surfaces (i.e. wing and 
horizontal tail) with the same projection in the Y-Z plane can be made equiva- 
lent to a single surface for the purpose of calculating induced drag. 

In the following theoretical development, use will be made of Munk's first 
theorem to lump the chordwise distribution of vorticity into a single chordwise 
load and to translate all loads into the O,Y,Z plane (fig. 1). 

Munk's second theorem (ref. 1) is illustrated in figure 2 and can be 
stated as: 

I n  calculating the  t o t a l  induced drag o f  a l i f t i n g  system, 
once a l l  the forces have been concentrated i n t o  the  plane 
O,Y,Z, we may, instead o f  using the  actual values o f  the 
ve loc i t y  normal t o  the l i f t i n g  elements [Vn'n(x,y,zl I a t  the 
or ig inal  points o f  appl icat ion o f  the forces, use one-half 
the l imi t ing  value o f  the normal ve loc i t y  [Vn(m,y ,z)  I for 
the corresponding values a t  points P ( 0 ,  y ,  2). 

This theorem allows the computations to be done in the Trefftz plane (down- 
stream infinity) rather than in the real plane. In the subsequent theoretical 
derivation, this fact will be utilized to make all the computations in the 
Trefftz plane, thereby greatly simplifying the calculations. 

The third theorem given by Munk (ref. 1) is presented as follows: 



When a l l  the  elements o f  a l i f t i n g  system have been trans- 
lated longi tudinal ly  t o  a s ingle  plane, the induced drag 
w i l l  be a minimum when the component o f  the  induced 
ve loc i t y  normal t o  the l i f t i n g  element a t  each point i s  
proportional t o  the cosine o f  the angle o f  i nc l ina t ion  o f  
the l i f t i n g  element a t  t h a t  point.  

This theorem is i l l u s t r a t e d  i n  f i g u r e  3  and can be summarized i n  equat ion form 
a s  : 

For a  h o r i z o n t a l  l i f t i n g  element i t  can be  seen from equa t ion  (1) t h a t  t h e  
normal v e l o c i t y  (downwash) a c r o s s  t h e  span is equa l  t o  a  cons tan t  ( f i g .  3). For 
a  v e r t i c a l  p lane  (8 = g o 0 ) ,  t h e  normal v e l o c i t y  (sidewash) must be equa l  t o  ze ro  
f o r  minimum induced drag.  The phys ica l  i n t e r p r e t a t i o n  of t h i s  theorem w i l l  be 
f u r t h e r  i l l u s t r a t e d  i n  a  subsequent s e c t i o n .  

Equation (1) w i l l  be u t i l i z e d  i n  t h e  fo l lowing t h e o r e t i c a l  development a s  
t h e  boundary cond i t ion  necessary  t o  achieve a minimum induced d rag  and hence an 
optimum a i r c r a f t  loading.  

T t e  b a s i c  equa t ion  f o r  c a l c u l a t i n g  t h e  a i rc ra f t - induced  drag can be 
de r ived  by applying t h e  Kutta-Joukowski theorem i n  t h e  d rag  d i r e c t i o n .  By 
v i r t u e  of Munk's theorems, t h e  c a l c u l a t i o n s  can be accomplished i n  t h e  T r e f f t z  
p lane  r a t h e r  than t h e  r e a l  p lane .  Thus, t h e  equa t ion  f o r  induced d rag  ex- 
pressed i n  terms of t h e  T r e f f t z  p lane  v a r i a b l e s  and us ing  v e c t o r  n o t a t i o n  is:  

Equation ( 2 )  a long wi th  t h e  induced v e l o c i t i e s  i n  t h e  T r e f f t z  p lane  de- 
r i v e d  from t h e  v o r t e x  model of t h e  l i f t i n g  s u r f a c e s  w i l l  comprise t h e  b a s i s  f o r  
t h e  induced drag computation. 

PHYSICAL INTERPRETATION OF THEORETICAL CONCEPTS 

To provide  a  b e t t e r  p h y s i c a l  understanding of t h e  computation of induced 
drag and t h e  c a l c u l a t i o n  of t h e  optimum load ing  f o r  minimum induced d rag ,  t h e  
t h e o r e t i c a l  concepts  d i scussed  i n  t h e  previous  s e c t i o n  w i l l  be i l l u s t r a t e d  
us ing a  wing-winglet conf igura t ion .  I n  f i g u r e  4 ,  t h e  sources  of induced drag 
f o r  a  wing-winglet combination a r e  shown. These a r e :  

o  Drag due t o  t h e  induced flow by the  wings on t h e  wing 

o  Drag due t o  the  induced flow by the  wings on t h e  wing le t  



o Drag due t o  t h e  induced flow by t h e  wing le t s  on t h e  wing le t  

o Drag due t o  t h e  induced f low by t h e  w i n g l e t s  on t h e  wing 

For s i m p l i c i t y ,  t h e  e f f e c t s  of  symmetry a r e  included i n  t h e  sources  of induced 
drag shown and a r e  no t  d e l i n e a t e d  s e p a r a t e l y .  

I n  f i g u r e  4 j a ) ,  t h e  e f f e c t  of t h e  wing induced flow is shown. The wing 
under p o s i t i v e  load produces a downwash on i t s e l f  which r e s u l t s  i n  t h e  wing - 
f o r c e  v e c t o r ,  F, t i l t i n g  rearward by an ang le  a i .  The wing f o r c e  v e c t o r ,  F, is 
perpendicular  t o  t h e  r e s u l t a n t ,  V ,  (Kutta-Joukowski theorem). The rearward 
r o t a t i o n  of t h e  f o r c e  v e c t o r  r e s u l t s  i n  a wing-induced drag.  A sidewash is 
a l s o  produced by t!e wing a t  t h e  wing le t  l o c a t i o n .  As can be s e e n  i n  f i g u r e  
4 (b ) ,  t h e  sidewash from t h e  wing combined wi th  t h e  f ree-s t ream v e l o c i t y  pro- 
duces a t ilt  forward of t h e  wing le t  f o r c e  r e s u l t i n g  i n  a t h r u s t  component. 

I n  f i g u r e  4 ( c ) ,  t h e  induced d rag  r e s u l t i n g  from t h e  sidewash of t h e  winr,- 
l e t  on i t s e l f  is presented.  This  r e s u l t s  i n  a rearward t i l t i n g  of t h e  wing'et 
f o r c e  v e t t o r  and an a t t e n d a n t  induced drag.  It should  be noted t h a t  t h e  d'rec- 
t i o n  of t h e  wing le t  f o r c e  v e c t o r  is c o n s i s t e n t  wi th  a p o s i t i v e  (upload) oo t h e  
wing. The wing le t  a l s o  induces  an upwash on t h e  wing. I n  f i g u r e  4 ( d ) ,  i t  can 
be  seen t h a t  t h i s  upwash r o t a t e s  t h e  wing f o r c e  v e c t o r  forward producing a 
t h r u s t  f o r c e .  

The r e s u l t s  from f i g u r e  4 a r e  summarized i n  f i g u r e  5, where a l l  t h e  in- 
duced v e l o c i t i e s  are combined. For minimum induced d rag ,  equa t ion  (1) ind i -  
c a t e s  t h a t  t h e  v e l o c i t y  normal t o  t h e  wing le t  n u s t  be  equa l  t o  ze ro  (9 = 9 0 ° ) .  
This can be seen t o  occur when t h e  sidewash produced on t h e  wing le t  by t h e  wing 
e x a c t l y  cance l s  t h e  sidewash produced by t h e  wing le t  on i t s e l f .  I n  o t h e r  
words, t h e  induced ang le  of a t t a c k  (ai)  of t h e  wing le t  is zero.  The induced 
drag of t h e  wing is a l s o  minimized by t h e  presence of a wingle t  s i n c e  t h e  wing- 
l e t  causes  a r educ t ion  i n  t h e  n e t  downwash a t  t h e  wing; and,  hence,  t h e  induced 
ang le  of a t t a c k  is reduced. 

DERIVATION OF NUMERICAL METHODS 

Vortex Model 

By v i r t u e  of Munk's theorems, t h e  c a l c u l a t i o n s  f o r  induced drag and t h e  
optimum l o a J i n g  can be accomplished i n  t h e  T r e f f t z  plane.  This  f a c t  consider-  
a b l y  s i m p l i f i e s  t h e  c a l c u l a t i o n  problem s i n c e  t h e  method w i l l  no t  be a func t ion  
of t k  l o n g i t u d i n a l  coord ina te .  The p r o j e c t i o n  of t h e  a i r c r a f t  non-planar 
l i f t i n g  s u r f a c e s  ' . I  t h e  T r e f f t z  p lane  w i l l  be  r e f e r r e d  t o  as t h e  load 
per imeter .  

I n  t h e  r e a l  p lane ,  t h e  a i r c r a f t  l i f t i n g  s u r f a c e s  w i l l  be r epresen ted  by a 
system of horseshoe v o r t i c e s .  The equa t ions  d e s c r i b i n g  t h e  induced v e l o c i t i e s  
i n  t h e  T r e f f t z  p lane  a t  a  c o n t r o l  po in t  P (o ,y i , z i )  ( f i g .  6)  due t o  a horseshoe 



v o r t e x  l o c a t e d  i n  t h e  r e a l  p lane  at a p o i n t  P ( x j , y j , z j )  a r e  g iven below as de- 
j r i ved  from t h e  Biot-Savart  Law ( r e f .  3 ) :  

where 

R~ = ( z ' ) ~  + (y '  -s '12 ( 6 )  

R2 = ( 2 1 ) ~  + (y '  ( 7 )  

yl = (yi - y j )  C O S ~ ~  + ( Z i - z j )  s i n e j  (8)  

Z '  = - ( y i - y j )  s i n 8 j  + ( z i  - z j )  C O S O ~  (9) 

and t h e  c i r c u l a t i o n  by v i r t u e  of t h e  Kutta-Joukowski theorem is  given a s  

I' (cn ~ 1 - i  A =  
v 

m 
2 (10) 

Inspec t ion  of equat ions  ( 3 )  t o  (5)  i n d i c a t e s  t h a t  t h e r e  is no c o n t r i b u t i o n  
from t h e  horseshoe bound l e g  i n  t h e  T r e f f t z  p lane  and t h e  induced v e l o c i t i e s  
a r e  not  dependent on x. The r e s u l t i n g  model then reduces t o  d e s c r i b i n g  t h e  
load per imeter  i n  the  T r e f f t z  p lane  ( f i g .  6)  by l i f t i n g  elements t h a t  are. 
r ep resen ted  by a t r a i l i n g  v o r t e x  p a i r  having a c i r c u l a t i o n  of equal  magnitude 
bu t  of oppos i t e  r o t a t i o n .  For each l i f t i n g  element t h e r e  i s  an a s s o c i a t e d  
c o n t r o l  po in t  loca ted  midway between t h e  p a i r  of v o r t i c e s .  

Induced Drag Ca lcu la t ion  

The b a s i c  equa t ion  f o r  c a l c u l a t i n g  the  induced d rag  f o r  an  a r b i t r a r y  non- 
p lanar  l i f t i n g  system was given i n  equat ion ( 2 )  a s  : 

The i n t e g r a l  is a c i r c u i t  i n t e g r a l  taken around t h e  per imeter  o f  t h e  pro- 
j e c t i o n  of t h e  l i f t i n g  system i n  t h e  T r e f f t z  plane.  The v e c t o r  is t h e  
r e s u l t a n t  induced v e l o c i t y  v e c t o r  i n  t h e  T r e f f t z  p lane  from a l l  v o r t i c e s  on t h e  
load per imeter .  The v e c t o r  ii is a u n i t  v e c t o r ,  normal t o  the  load per imeter .  



Reducing equation (2) to coefficient form, nondimensionalizing the lifting 
element length (R) by the reference semispan, and using the relationship for 1 
the average chord, the following result is obtained 

i 

Writing the above in the form of a svm and assuming symmetry about the X-Z 
plane 

where m equals ttp number of elements that comprise the load perimeter. 
Writing equztion (li) in terms of the nondimensional lifting element semi- 
width(s) dnd noting thai 

vn = vcos (V ,ii) 

the expression for induced drag can be written as 

The velocities normal to the lifting elements (Vn) can be determined by 
utilizing the expressions for the induced velocities in equations (4) and (5). 

From the geometry of figure 6, the normal velocity at Pi due to a vortex 
pair at Pj can be expressed in terms of the induced velocities as: 

Vni wi - - -  V i 
v - cos (ei-ej) - -  V V ~in(€)~ - ej) (15) i 

OD m m 

Combining equations ( 4 ) ,  (5), (lo), and (15) yields the expression for the 
total normal velocity at the control point Pi due to vortices at all points Pj: 

The portion contained in curvy brackets is only a function of the projected 
aircraft geometry in the Trefftz plane and will be denoted by Aij. Thus. in 
terms of the geometric influence function Aij, 



Substitution of 
sion for the induced 

equation (17) into equation (14) yields the firla1 expres- 
drak : 

6 

The independent parameters in equation (18) are the loadings normal to the 
load perimeter, the lifting element semi-widths, and the geometric influence 
function. The loading normal to the load perimeter will be considered input to 
the present method. The normal loading can be determined from any available 
noa-planar lifting surface calculation procedure such as in reference 3 or from 
experimental data. The lifting element semi-width is also considered as input. 
The geometric influence function (Ai.), as has been previously mentioned, is a 
function of the input aircraft geome$ry. 

For an arbitrary applied load, the lift can be determined from 
ing expression 

L = j * i= i . i ;  d!L 

Expressing equation (19) in coefficient form and writing as 3 sum 

Since 

- 
cos(ii k) = cos 0 

j ' j 

the final expression for the lift coefficient is given by 

The  bending-moment coefficient at the X-axis can be expressed as 

the follow- 

(19) 

The spanwise center-of-pressure location can be determined from the following 
equation : 



The a i r c r a f t  e f f i c i e n c y  f a c t o r  can b e  c a l c u l a t e d  from t h e  fo l lowing 
s t andard  e q u a t i m :  .,q 

Optimum Load Ca lcu la t ion  

The express ion f o r  t h e  t o t a l  v e l o c i t y  normal t o  a l i f t i n g  element was 
given i n  equat ion (17) a s :  

According t o  Munk's theorem 111, t h e  load ing  f o r  minimum induced drag i s  
obta ined when t h e  d i s t r i b u t i o n  of normal v e l o c i t y  s a t i s f i e s  equa t ion  (1 ) :  

where wo i s  a constant .  Using equa t ion  (1) a s  a boundary cond i t ion  and combin- 
i n g  i t  wi th  equat ion ( 1 7 ) ,  t h e r e  r e s u l t s :  

where t h e  loading i n  equa t ion  (26) is t h e  optimum loading.  Using square  
i 

bracke t s  t o  i n d i c a t e  mat r ix  n o t a t i o n ,  equat ion (26) can be w r i t t e n  a s :  

Solving f o r  t h e  optimum load ing  

i 

The va lue  of t h e  a r b i t r a r y  c o n s t a n t ,  wo, can be determined from equat ion 
(22) by s p e c i f y i a g  t h e  a i r c r a f t  l i f t  c o e f f i c i e n t .  

I n  summary, t o  determine t h e  loading f o r  minimum induced d rag ,  only t h e  
l i f t  c o e f f i c i e n t  and a i r c r a f t  geometry a r e  r equ i red  f o r  inpu t .  Once t h e  



loading has  been determined, t h e  miuimum induced d rag ,  t h e  spanwise center-of-  
p r e s s u r e  l o c a t i o n ,  and e f f i c i e n c y  can be  determined i n  t h e  manner p rev ious ly  
presented (eqs. (18),  (241, and (25)) .  

CORRELATION OF METHOD 

The theory descr ibed i n  t h e  previous  s e c t i o n  f o r  c a l c u l a t i n g  t h e  a i r c r a f t  
induced drag f o r  a g iven loading o r  th.? loading f o r  a minimum induced drag has 
been coded f o r  use  on Lockheed computers. I n  t h i s  s e c t i o n ,  computations us ing  
t h e  p resen t  method w i l l  be compared t o  o t n e r  t h e o r e t i c a l  s o l u t i o ! ~ ~  and t o  
exper imenta l  r e s u l t s .  

Induced-Drag C o r r e l a t i o n s  

Numerical s o l u t i o n s  f o r  t h e  a i r c r a f t  e f f i c i e n c y  f o r  a monoplane of a s p e c t  
r a t i o  e i g h t  a r e  shown i n  f i g u r t  7 f o r  va r ious  va lues  of l i f t i n g  element widths.  
For t h i s  example, t h e  widths  of t h e  elements over  t h e  load per imeter  were held  
constant .  A more e f f i c i e n t  r e s u l t  could have been obta ined i f ,  f o r  i n s t a n c e ,  a 
cos ine  spacing of t h e  elements had been used. The inpu t  loading on t h e  mono- 
p lane  was s p e c i f i e d  t o  be  e l l i p t i c a l .  The exac t  s o l u t i o n  f o r  t h e  e f f i c i e n c y  
f a c t o r  ( r e f .  1) on a n  e l l i p t i c a l l y  10aiLd motiopiane is,  of course ,  1.0.  A s  can 
be seen,  t h e  numerical  s o l u t i o n  approaches t h e  exac t  va lue  as t h e  width of t h e  
elements become smal le r .  For a l i f t i n g  element width equa l  t o  .O1 (b/2.), t h e  
e r r o r  was approximately 0.5% i n  e f f i c i e n c y  . 

A s i m i l a r  c a l c u l a t i o n  was made f o r  an a s p e c t  r a t i o  e i g h t  b i p l a n e  wi th  
wings of equa l  span and a height-to-span r a t i o  of 0.5 .  The b i p l a n e  was loaded 
opt imal ly  u t i l i z i n g  t h e  loadings  de r ived  i n  r e f e r e n c e  1, based on transforma- 
t i o n  theory.  The numerical  c a l c u l a t i o n  f o r  e f f i c i e n c y  f a c t o r  was 1.6307 (us ing 
cons tan t  elements of  0.0125(b/2) i n  width) compared t o  the  va lue  of 1.6260 
given i n  r e fe rence  1. The r e s u l t i n g  d i f f e r e n c e  was approximately 0.3%. 

Jn f i g u r e  8 ,  induced-drag r e s u l t s  c a l c u l a t e d  us ing t h e  p resen t  method a r e  
compared t o  t h e  exper imenta l  r e s u l t s  f o r  a n  advanced Lockheed t r a n s p o r t  de- 
s igned t o  c r u i s e  a t  0.95 Mach number and a t  a l i f t  c o e f f i c i e n t  of 0.47. The 
spanwise load ing  f o r  t h e  a i r c r a f t  was obta ined from an a v a i l a b l e  l i f t i n g  
s u r f a c e  program s i m i l a r  t o  t h a t  i n  r e fe rence  3. A s  can be seen ,  t h e  agreement 
Letwcen theory and experiment is very  good over  a range near  t h e  des ign l i f t  
c o e f f i c i e n t .  

A f u r t h e r  c o r r e l a t i o n  example is presented i n  f i g u r e  9 where numerical  re-  
s u l t s  a r e  compared wi th  exper imenta l  d a t a  f o r  a non-planar Lockheed boxplane 
conf igura t ion .  Again, t h e  load ing  was obta ined from l i f t i n g - s u r f a c e  theory .  
A s  i n d i c a t e d ,  good agreement is obta ined.  

Optimum Load C o r r e l a t i o n s  

I n  f i g u r e  10 the  optimum loading i s  presented f o r  an a s p e c t  r a t i o  e i g h t  
monoplane a s  c a l c u l a t e d  from equat ion (28) us ing cons tan t  elements of .Ol(b/2) 



i n  wid th .  Also shown is  t h e  c l a s s i c  optimum r e s u l t  f o r  a monoplane-  a n  
e l l i p t i c a l  l o a d i n g ,  The c o r r e l a t i o n  c a n  b e  s e e n  t o  b e  v e r y  good. The e r r o r  i n  
induced d r a g  o f  t h e  computed r e s u l t  was approx ima te ly  0.52, which is c o n s i s t e n t  1 
w i t h  t h e  r e s u l t s  i n  f i g u r e  7. 

I n  r e f e r e n c e  2 ,  a n  optimum l o a d i n g  f o r  a wing wi th  a v i n g l e t  i s  prcaenLed 
as d e r i v e d  from t r a n s f o r m a t i o n  theo ry .  T h i s  s o l u t i o n  is compared t o  t h e  r e s u l t  
c a l c u l a t e d  u s i n g  t h e  p r e s e n t  method i n  f i g u r e  11. Good agreement  between t h e  - 
two methods is o b t a i n e d .  I . 

ILLUSTRATIVE USE OF METHOD 

Taken t o g e t h e r ,  t h e  p r e s e n t  numer i ca l  method p r o v i d e s  a  unique  t o o l  f o r  
unde r s t and ing  t h e  s o u r c e s  o f  induced  d r a g  and making c o n f i g u r a t i o n  t r a d e - o f f s  
t o  a c h i e v e  e n  o v e r a l l  aerodynamic a s  well a s  s t r u c t u r a l l y  optimum a i r c r a f t .  An 
i l l u s t r a t i o n  of  u s i n g  t h e  method t o  p rov ide  a d d i t i o n a l  unde r s t and ing  i n t o  t h e  
b a s i c  s o u r c e s  and mechanisms of  induced d r a g  is  p r e s e n t e d  i n  f i g u r e  12, where 
t h e  magnitude of t h e  induced-drag components f o r  a  wing-wicglet  c o n f i g u r a t i o n  
( f i g .  4) w i t h  optimum load  is p r e s e n t e d .  From t h e  f i g u r e ,  i t  cian b e  s e e n  t h a t  
t h e  induced-drag c o n t r i b u t i o n  from t h e  wing on t h e  w i n g l e t  and :he w i n g l e t  on 
t h e  w i n g l e t  a r e  of  t h e  same magnitude and c a n c e l  each  o t h e r .  T h i s  is, of  
cou r se ,  t h e  r e s u l t  p r e v i o u s l y  i l l u s t r a t e d  i n  f i g u r e  5. 

A s  a  r e s u l t  o f  d e s i g n  o r  s t r u c t u r a l  c o n s t r a i n t s ,  t h e  a i r c r a f t  may n o t  b e  
a b l e  t o  a c h i e v e  t h e  op .  ?mm l o a d i n g  f o r  minimum induced d rag .  The p n n a l t i e s  
t h a t  i n c u r  from t h e  u s e  of non-optimum l o a d i n g s  c a n  b e  q u i c k l y  a s s e s s e d  u s i n g  
t h e  p r e s e n t  method. T h i s  is i l l u s t r a t e d  i n  f-:gure 13, where t h e  w i n g l e t  load-  
i n g  f o r  a wing-winglet c o n f i g u r a t i o n  is v a r i e d .  As can  b e  s e e n  t h e  induced 
d r a g  is s e n s i t i v e  t o  c e r t a i n  t ypes  of  changes (non-optimum 1) where i t  is n o t  
t o  o t h e r s  (non-optimum 2 ) .  

The p r e s e n t  method can  a l s o  be used  t o  q u i c k l y  make c o n f i g u r a t i o n  t r a d e -  
o f f ~ .  T h i s  i s  i l l u s t r a t e d  i n  f i g u r e s  14 and 15. I n  f i g u r e  14 t h e  pavame t r i c  
e f f e c t  of  wing a d d i t i o n s  on induced d r a g  and on t h o  wir~g  spanwise  cen t e r -o f -  
p r e s s u r e  l o c a t i o n  as c a l c u l a t e d  from t h e  p r e s e n t  method a r e  p r e s e n t e d .  I f ,  f o r  
i n s t a n c e ,  i t  was d e s i r e d  t o  f i n d  a  c o n f i g u r a t i o n  which would g i v e  t h e  maximum 
induced d r a g  r e d u c t i o n  f o r  a  minimum ou tboa rd  s h i f t  i n  wing c e n t e r  of  p r e s s u r e ,  
t h i s  can  q u i c k l y  be  determined by r e p l o t t i n g  t h e  p a r a m e t r i c  d a t a  of  f i g u r e  14 
i n  t h e  form of f i g u r e  15 and t h e  r e s u l t  de te rmined .  

CONCLUDINC REMARKS 

A u n i f i e d  numer i ca l  method a p p l i c a b l e  t o  non-planar  subson ic  a i r c r a f t  hc s  
been developed f o r  t h e  purpose of c a l c u l a t i n g  t h e  induced d r a g  f o r  an  a r b i t r a r y  
l oad ing  o r  t h e  optimum a i r c r a f t  l o a d i n g  t h a t  g i v e s  minimum induced d r a g .  



Use of the numerical method has indi-ate4 d that: 

the method is simple and easy to use 

induced drag and optimum loading results from the numerical 
method correlate very well with non-planar solutions obtained 
from more complex theories 

numerical induced-drag predictions ace in good agreement with 
experimental data for planar and non-planar configurations 

the numerical method provides both analysis and design capa- 
bility which allows the designer to make rapid configuration 
assessments and trade-offs for the purpose of achieving an 
overall aerodynamic as well as structurally optimum aircraft. 
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Figure 1.- Illustration of Munk's theorem 1. 
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Figure 2.- Illustration of Munk's theorem 11. 



IN EQUATION FORM: 

V" = wo COS? 
I I I I 

WHERE 
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Figure 3.- Illustration of Munk's theorem 111. 
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F igu re  4.-  Sources  of induced d r a g  f o r  a wingfwing le t  c o n f i g u r a t i o n .  
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Figure 5.- Combined sources of induced drag for a winglwinglet configuration. 
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Figure 6.- Induced velocities in the 
Trefftz plane. 
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Figure 7 . -  Variation of eff ic iency for optimally loaded monoplane. 
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Figure 8.- Induced drag for Lockheed ATT-95 aircraf t .  
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Figure 9.- Induced drag for a Lockheed boxplane. 
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10.- Comparison of numerical and exact optimum 
span loadings for a monoplane. 
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Figure 11.- Comparison of theoretical optimum loadings 
for a winglwinglet configuration. 
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Figure 12.- Illustration of induced drag calculations for 
a wLng/winglet configuration. 
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Figure 13.- Effect of changes in winglet loading on the ind. ~ e d  drag 
of a winglwinglet configuration. 
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Figure 14.- Basic theoretical effects due to wing additions. 
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Figure 15.- Theoretical e f f e c t  of wing addit ions  
for  various dihedral angles .  




